
International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

5 | 1 7

Prioritization scheme as Panacea for
good network performance

Munir Kolapo Yahya-Imam and Prof. Sellapan Palaniappan
School of Science and Engineering,

Malaysia University of Science and Technology,
Selangor, Malaysia.

mk.yahya2007@yahoo.com and sell@must.edu.my

Dr. Por Lip Yee
Dept. of Computer System & Technology,

University of Malaya,
Kuala Lumpur, Malaysia.

porlip@um.edu.my

Abstract— Bandwidth management in communication is an
important concern in academic institution with bandwidth costs
as high as in some developing countries. ISPs and businesses
cannot afford to shove a router on their network, connect it to the
Internet and hope for high quality of service.

This paper presents the design and implementation of a
prioritization scheme on a LAN network by combining several
bandwidth management tools. Specifically, it manages the limited
bandwidth resources that are available in the most efficient way
using CBQ (Class Based Queuing), SQUID delay pools with
iptable as network optimizer.

Keywords- Bandwidth management; Prioritization scheme;
Class Based Queuing; Squid Delay pools; University Network
performance; iptable.

I. INTRODUCTION

Bandwidth can be described as the amount of data that can
be transmitted in a fixed amount of time, expressed in kilobits
per second “Ref. [1]”. Today the network traffic in institutions
of higher learning has greatly increased and this is mainly due
to increase in the number of users which results in bandwidth
congestion and poor quality of service to end users. “Ref. [2]”
“In computer networks, bandwidth is often used as a synonym
for data transfer rate” i.e. the amount of data that can be
carried from one node to another in a given time period,
usually a second. It has been recognized that bandwidth is a
valuable resource/asset, and therefore needs to be managed,
conserved and shared effectively via innovative approaches.

For instance, bandwidth management in universities
facilitate a robust campus network with a good connectivity
over the Internet. Students and their parents consider good
access to networked resources as a factor for their choice of
institutions. At the same time, research demands are also
growing. “Ref. [3]” Advanced research such as UCSC
Genome Bioinformatics and Mars exploration makes use of a
large network device for massive calculation which requires a
huge amount of bandwidth. Nevertheless, it is often not
practical to meet the increased demand for bandwidth by
simply buying more. Peer-to-peer computing environment and
applications such as Napster, Kazaa, Audio-galaxy and
Gnutella result in greater demand for network bandwidth that
most colleges and universities cannot afford. Each campus

must decide when the cost of investing in bandwidth
management strategy will cost less rather than buying more
bandwidth. Investing in neither bandwidth management
strategy nor more bandwidth is tantamount to leaving the
campus network at risk of been hopelessly bogged down to the
point where users are not well served.

One effective solution for these problems is to manage the
existing university network bandwidth almost equally, using
suitable queuing disciplines and filters that exist in Linux. It is
a full-featured technology that reduces cost and improves
network quality of service. “Ref. [4]” To ensure that your
network users have access to critical applications and a good
network quality of service will require knowledge of where and
how your network bandwidth is been consume and the ability
to set policies to prioritize it. “Ref. [5]” Bandwidth
Prioritization lets you control network bandwidth to specific
content categories and gives you understandable report on your
network bandwidth usage so you can troubleshoot problems
and limit or prioritize certain users or applications to maintain
the highest level of a good network quality of service and
performance.

II. LITERATURE SURVEY

Tertiary institutions are faced with major obstacles in their
use of networked information resources “Ref. [6]”. The price
of bandwidth is disproportionately high, and it is costly and
difficult to improve international network connectivity.
Bandwidth management is a general term given as a collection
of tools and techniques that an institution can use to reduce
demand on critical segment of their network “Ref. [7]”. In
order to effectively manage a network connection of any size,
you will need to take a multifaceted approach that includes
effective network monitoring, a sensible policy that defines
acceptable behavior, and a solid implementation that enforces
these rules “Ref. [8]”. Effective management and optimization
of bandwidth are critical to research and education and there is
urgent demand for training skills and knowledge developed
within this area. Research has shown that majority of Tertiary
Institutions undertake little or no monitoring or management
of their bandwidth “Ref. [9]”. The same research also
recommended that improving bandwidth management is
probably the easiest way for universities to improve the
quality and quantity of their bandwidth for educational

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

6 | 1 7

purposes. Moreover, internet connectivity and access to
networked information resources are increasingly essential
requirement for any research or educational institution and to
achieve this, capacity development within the area of
bandwidth management is an essential element. According to
“unpublished” [10] bandwidth management and optimization
activities are often not undertaken or when they are, they often
face significant problems. There are number of contributing
factors to this:

(i) Lack of information, skills, knowledge and actions at the
technical level.

(ii) Lack of leadership and direction to help guide actions and
policy development.

(iii) A non-supportive wider strategic and policy frame work
within which the appropriate technical solution can be
implemented.

III. SYSTEM DESIGN

Designing our new prioritization scheme will involve the
combination of some of the existing bandwidth management
tools as aforementioned. The first tool that will be use is CBQ.
It is a queuing method that performs classification by port
number or IP address, and controls the bandwidth usage of
traffic in accordance with the pre-defined classes. The second
tool is Squid which is a proxy server and web cache daemon
“Ref. [11]”. It has a wide variety of uses, in this paper squid
will be used to fine tune the speed of traffics that passes
through our network. Finally, iptable will be used to set
priorities for traffics that will be passing through our network.
This will be achieved with the help of a tool know as
“iptables” which can be found inside our Linux kernel.
Implementing our new bandwidth management configuration
inside a Linux sever will highly improve the network quality
of service and also the issue of insecurity will not be a threat
on the university network because the entire network
bandwidth management design and configuration will be done
in a command line mode which will make it difficult to hacked
into by intruders. The entire network bandwidth will be shared
at two levels inside our main network server. Any network
traffic that falls into any of these levels will be limit to a
specified transmitting speed that is assigned to that level.

A. The Input Design

The input of the bandwidth optimizer is shown in Fig 1.1 it
consists of the PREROUTING chain and the FORWARD
chain. The packets are inspected and a routing decision is
made based on the MARK type set by the CBQ classifier.
When the packets pass through the INPUT handle which is
onus for all traffic that enters the system, the bandwidth is
split among the various LOCAL system processes (e.g.
Apache, MySQL etc).

Fig 1.1 Input Design

Fig 1.2 Output Design

B. The Output Design

The output of the bandwidth optimizer is shown in Fig 1.2
it consists of the FORWARD chain and the POSTROUTING
chain. The packets after being inspected from the input of the
optimizer and routed based on the MARK type set by the CBQ
classifier, the packets either goes to the POSTROUTING chain
or the OUTPUT chain which is onus for all traffic leaving the
system. The output traffic as seen comes from the LOCAL
system processes forming the egress of the optimizer.

IV. IMPLEMENTATION

We will start our configuration by setting up an ultimate
conditioner script which creates a stable platform for the
prioritization of our scarce bandwidth. This will guarantee a
stable download even when huge upload is happening on the
network.

#!/bin/bash

The Ultimate Setup For Your Internet Connection

Set the following values to somewhat less than your actual
#download

and uplink speed. In kilobits

DOWNLINK=2000

UPLINK=512

DEV=eth0

clean existing down- and uplink qdiscs, hide errors

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

7 | 1 7

tc qdisc del dev $DEV root 2> /dev/null > /dev/null

tc qdisc del dev $DEV ingress 2> /dev/null > /dev/null

uplink######

install root CBQ

tc qdisc add dev $DEV root handle 1: cbq avpkt 1000
bandwidth 10mbit

shape everything at $UPLINK speed - this prevents huge
queues in your

DSL modem which destroy latency:

main class

tc class add dev $DEV parent 1: classid 1:1 cbq rate
${UPLINK}kbit \

allot 1500 prio 5 bounded isolated

high prio class 1:10:

tc class add dev $DEV parent 1:1 classid 1:10 cbq rate
${UPLINK}kbit \

 allot 1600 prio 1 avpkt 1000

bulk and default class 1:20 - gets slightly less traffic,

and a lower priority:

tc class add dev $DEV parent 1:1 classid 1:20 cbq rate
$[9*$UPLINK/10]kbit \

 allot 1600 prio 2 avpkt 1000

both get Stochastic Fairness:

tc qdisc add dev $DEV parent 1:10 handle 10: sfq perturb 10

tc qdisc add dev $DEV parent 1:20 handle 20: sfq perturb 10

start filters

TOS Minimum Delay (ssh, NOT scp) in 1:10:

tc filter add dev $DEV parent 1:0 protocol ip prio 10 u32 \

 match ip tos 0x10 0xff flowid 1:10

########## downlink #############

slow downloads down to somewhat less than the real speed
to prevent

queuing at our ISP.

attach ingress policer:

tc qdisc add dev $DEV handle ffff: ingress

filter *everything* to it (0.0.0.0/0), drop everything that's

coming in too fast:

tc filter add dev $DEV parent ffff: protocol ip prio 50 u32
match ip src \

0.0.0.0/0 police rate ${DOWNLINK}kbit burst 10k drop
flowid :1

Within the CBQ qdisc we place two Stochastic Fairness
Queues that make sure that multiple bulk streams don't drown
each other out. Downstream traffic is policed using a “tc”
filter containing a Token Bucket Filter. After which we write a
script for our CBQ bandwidth optimizer as shown in the
following script code:

#!/bin/bash

#Adjust CEIL to 75% of your upstream bandwidth limit. In our
case a 512Kbps Uplink

CEIL=384

IFACE="eth0"

MTC="tc"

IPT="/sbin/iptables"

Createqdics for root

$MTC qdisc add dev $IFACE root handle 1: cbq default 15

$MTC class add dev $IFACE parent 1: classid 1:1 cbq rate
${CEIL}kbit ceil ${CEIL}kbit

$MTC class add dev $IFACE parent 1:1 classid 1:10 cbqrate
90kbit ceil 90kbit prio 0

$MTC class add dev $IFACE parent 1:1 classid 1:11 cbq rate
120kbit ceil ${CEIL}kbitprio 1

$MTC class add dev $IFACE parent 1:1 classid 1:12 cbq rate
20kbit ceil ${CEIL}kbitprio 2

$MTC class add dev $IFACE parent 1:1 classid 1:13 cbq rate
20kbit ceil ${CEIL}kbitprio 2

$MTC class add dev $IFACE parent 1:1 classid 1:14 cbq rate
20kbit ceil ${CEIL}kbitprio 3

$MTC class add dev $IFACE parent 1:1 classid 1:15 cbq rate
30kbit ceil ${CEIL}kbitprio 3

#Now we set the filters so we can classify the packets with
iptables.

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 1
handle 1 fwclassid 1:10

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 2
handle 2 fwclassid 1:11

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 3
handle 3 fwclassid 1:12

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

8 | 1 7

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 4
handle 4 fwclassid 1:13

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 5
handle 5 fwclassid 1:14

$MTC filter add dev $IFACE parent 1:0 protocol ipprio 6
handle 6 fwclassid 1:1

We can start marking packets adding rules to the
PREROUTING chain in the mangle table.

We have done a -j RETURN so packets don't traverse all
rules.

$IPT -t mangle -A PREROUTING -p icmp -j MARK --set-
mark 0x1

$IPT -t mangle -A PREROUTING -p icmp -j RETURN

Now we can start adding more rules, lets do proper TOS
handling:

$IPT -t mangle -A PREROUTING -m tos --tos Minimize-
Delay -j MARK --set-mark 0x1

$IPT -t mangle -A PREROUTING -m tos --tos Minimize-
Delay -j RETURN

$IPT -t mangle -A PREROUTING -m tos --tos Minimize-Cost
-j MARK --set-mark 0x5

$IPT -t mangle -A PREROUTING -m tos --tos Minimize-Cost
-j RETURN

$IPT -t mangle -A PREROUTING -m tos --tos Maximize-
Throughput -j MARK --set-mark 0x6

$IPT -t mangle -A PREROUTING -m tos --tos Maximize-
Throughput -j RETURN

Now prioritize ssh, dns, telnet e.t.c packets:

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 22 -j
MARK --set-mark 0x1

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 22 -j
RETURN

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 53 -j
MARK --set-mark 0x1

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 53 -j
RETURN

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 23 -j
MARK --set-mark 0x1

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 23 -j
RETURN

A good idea is to prioritize packets to begin tcp connections,
those with SYN flag set:

$IPT -t mangle -I PREROUTING -p tcp -m tcp --tcp-flags
SYN,RST,ACK SYN -j MARK --set-mark 0x1

$IPT -t mangle -I PREROUTING -p tcp -m tcp --tcp-flags
SYN,RST,ACK SYN -j RETURN

Now prioritize http and https packets:

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 80 -j
MARK --set-mark 0x2

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 80 -j
RETURN

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 143 -j
MARK --set-mark 0x2

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 143 -j
RETURN

Now prioritize smtp, pop and imap packets:

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 25 -j
MARK --set-mark 0x5

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 25 -j
RETURN

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 110 -j
MARK --set-mark 0x5

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 110 -j
RETURN

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 143 -j
MARK --set-mark 0x5

$IPT -t mangle -A PREROUTING -p tcp -m tcp --sport 143 -j
RETURN

we terminate the PREROUTING table with:

iptables -t mangle -A PREROUTING -j MARK --set-mark
0x6

We start marking packets adding rules to the OUTPUT
chain in the mangle table.

We have done a -j RETURN so packets don't traverse all
rules.

$IPT -t mangle -A OUTPUT -p icmp -j MARK --set-mark 0x1

$IPT -t mangle -A OUTPUT -p icmp -j RETURN

Now we can start adding more rules, lets do proper TOS
handling:

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

9 | 1 7

$IPT -t mangle -A OUTPUT -m tos --tos Minimize-Delay -j
MARK --set-mark 0x1

$IPT -t mangle -A OUTPUT -m tos --tos Minimize-Delay -j
RETURN

$IPT -t mangle -A OUTPUT -m tos --tos Minimize-Cost -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -m tos --tos Minimize-Cost -j
RETURN

$IPT -t mangle -A OUTPUT -m tos --tos Maximize-
Throughput -j MARK --set-mark 0x6

$IPT -t mangle -A OUTPUT -m tos --tos Maximize-
Throughput -j RETURN

Now prioritize ssh, dns, telnet e.t.c packets:

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 22 -j
MARK --set-mark 0x1

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 22 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 53 -j
MARK --set-mark 0x1

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 53 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 23 -j
MARK --set-mark 0x1

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 23 -j
RETURN

A good idea is to prioritize packets to begin tcp connections,
those with SYN flag set:

$IPT -t mangle -I OUTPUT -p tcp -m tcp --tcp-flags
SYN,RST,ACK SYN -j MARK --set-mark 0x1

$IPT -t mangle -I OUTPUT -p tcp -m tcp --tcp-flags
SYN,RST,ACK SYN -j RETURN

Now prioritize http and https packets:

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 80 -j
MARK --set-mark 0x2

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 80 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 143 -j
MARK --set-mark 0x2

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 143 -j
RETURN

Now prioritize smtp, pop and imap packets:

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 25 -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 25 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 110 -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 110 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 143 -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 143 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 995 -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 995 -j
RETURN

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 465 -j
MARK --set-mark 0x5

$IPT -t mangle -A OUTPUT -p tcp -m tcp --sport 465 -j
RETURN

We terminate the OUTPUT table with:

iptables -t mangle -A OUTPUT -j MARK --set-mark 0x3

The next is our squid delay pools configuration. Based on
our CBQ implementation, we are guaranteed of a fair system
(optimizer) that will prioritize traffic and allow them pass
through the proper chains as shown on the input and output
design diagrams. We will now limit individual clients or user
on our network to use the right bandwidth when browsing web
pages and downloading files from the network by
implementing Squid delay pools to help us fine tune the
bandwidth utilization on individual systems / users on the
network.

##==========Delay Pools Configuration=========

Lets Create some couple of Access Control List (ACLs)

aclmpot_neturl_regex -i 192.168.2.0/24

aclbad_extensionsurl_regex -i ftp .mp3 .wav .mpeg .avi .mpg
.wmv .wma .m4 .iso.zip .rar .tar.gz .tar.bz2 .vbs$

aclmpot_browsingurl_regex -i .html .php .jpg .jpeg .png .gif
.ico .swf .asp .aspx .pdf .inc .doc .ppt .cfm .cfm$

aclwork_times time 08:00-22:00

delay_pools 3

Lets us allow unlimited traffic on our local network

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

10 | 1 7

delay_class 1 2

delay_parameters 1 -1/-1 -1/-1

delay_access 1 allow mpot_net

Lets us now limit bandwidth for bad extensions

delay_class 2 2

delay_parameters 2 16000/16000 8000/8000

delay_access 2 allow work_timesbad_extensions

=== EXPERIMENTAL ===

Lets make sure Pages are served at 80Kbps per client

delay_class 3 2

delay_parameters 3 187500/187500 10000/10000

delay_access 3 allow mpot_browsing

V. RESULTS

After putting all the codes and configuration together on
our Linux Machine using ubuntu linux server version, some
testing were made to ensure that it met with the paper goal.
The conditions tested include:-

Fig 5.1: Iptables to Confirm Proper Marking of Packets

(i) Flow of packets in the proper class and qdisc from our
optimizer (Fig 5.2)

(ii) Iptables to confirm proper MARKing of packets (Fig 5.1)

(iii) Squid delay pools bandwidth shaping (Fig 5.3 & Fig 5.4)

For delay pools bandwidth shaping, we connect some
workstation systems to our LAN network. After the
connection had been established, we try and download an
“iso” file from www.ubuntu.com/download and check the
speed. The downloading started automatically and the speed
was limited to the specified rate we gave during our
configuration (64Kbps). Recall that “.iso” extension is a
member of bad_extensions acl in our squid delay pool
configuration. In the 24% and 51% of the downloading, the
speed was within the specified limit as shown in Fig 5.3 and
Fig 5.4 respectively. The fact that our download speed rate did
not exceed the specified limit has proved that users on our
network are using our squid configuration and also our
network behavior is in line with the configurations we made
earlier.

Fig 5.2 Flow of Packets in the Proper Class and Qdisc from our Optimizer

International Journal of Conceptions on Computing and Information Technology
Vol. 9, Issue 2, August’ 2024; ISSN: 2345 - 9808

11 | 1 7

Fig 5.3: Downloading an iso File (24% Completed)

Fig 5.4: Downloading an iso File (51% Completed)

VI. CONCLUSION

Designing a new bandwidth management scheme is an
elusive task. It involve consummate technical skills in this area
in order to have a better understanding of the problems that
network user might encountered. In our new scheme, the
output generated has shown that the limited bandwidth
available had been fully optimized through the use of our
ultimate conditioner script which created a stable platform for
the prioritization of our scarce bandwidth and allow the
network traffic to pass through the proper chains. Also
individual users have now been limited to use the right
bandwidth when browsing web pages and downloading files
from the network.

REFERENCES
[1] M. Bradley (2012). “Wireless / Networking Guide,”

Availble:http://compnetworking.about.com/od/speedtests/g/bldef_bandw
idth.htm.

[2] M. Rouse (2010). “Improving Business Intelligence with Network
Monitoring Tools,” pp.7. Available:
http://searchenterprisewan.techtarget.com/definition/bandwidth

[3] G. H. Kimberly, “Why bandwidth and the telecoms?” in wireless and the
Challenges of the future, K. Brutt, University Press, 2009, Duluth.

[4] C. J Taylor “Bandwidth and the wireless,” 4th Ed, Compton Press, 2010,
Los Angeles.

[5] Pactum (2012). “Bandwidth Management & Packet Shaper,” Pactum
Network solutions. Available:
http://www.pactumnetworks.com/bandwidth-management-packet-
shaper.

[6] L. Chitanana “Bandwidth management in universities in Zimbabwe:
Towards a responsible user base through effective policy
implementation,” appears in International Journal of Education and
Development using Information and Communication Technology
(IJEDICT), 2012, Vol. 8, Issue 2, pp. 62-76.

[7] K. Mochizuki, S. Shimazaki, D. Hanawa, and K. Oguchi “Proposal of
New Traffic Control Method in the Next Generation Home Network,”
appears in Telecommunications and Signal Processing (TSP), 2012, 35th
International Conference on Sci. & Technol., Seikei Univ., Musashino,
Japan.

[8] L. M. Patnaik and K. R. Venugopal “Bandwidth Limiter,” presented at
second international conference on information processing, Jan., 2008.
Published by I.K International Pvt limited, India.

[9] C. George and F. I. Kizumba, “Bandwidth Management Issues in
African Universities,” presented at the AAU Conference in Lome Togo,
2005.

[10] O. Jimoh, “Bandwidth and Applications,” M.Sc thesis, Dept of
Computer Science, University of Ilorin, Ilorin, Nigeria, 2007.

[11] I. Labbé, F. St-Onge, D. Kidston, and J. Roy “Experience Applying
Policy-Based Techniques to Traffic Management in Low-Bandwidth
Heterogeneous Networks,” presented at Systems and Networks
Communications, ICSNC 2007. Second International
Conference, Ottawa.

